MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. EN 1.4110 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.6 to 47
11 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 350 to 530
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
770 to 1720
Tensile Strength: Yield (Proof), MPa 170 to 910
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 200
790
Melting Completion (Liquidus), °C 1020
1440
Melting Onset (Solidus), °C 960
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
480 to 4550
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 34
28 to 62
Strength to Weight: Bending, points 16 to 27
24 to 41
Thermal Diffusivity, mm2/s 10
8.1
Thermal Shock Resistance, points 18 to 39
27 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0.010 to 0.12
13 to 15
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
81.4 to 86
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.2 to 1.9
0
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0