MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. EN 1.4971 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.6 to 47
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
81
Shear Strength, MPa 350 to 530
530
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
800
Tensile Strength: Yield (Proof), MPa 170 to 910
340

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 960
1410
Specific Heat Capacity, J/kg-K 400
450
Thermal Conductivity, W/m-K 36
13
Thermal Expansion, µm/m-K 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 2.8
7.6
Embodied Energy, MJ/kg 45
110
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
220
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 34
26
Strength to Weight: Bending, points 16 to 27
23
Thermal Diffusivity, mm2/s 10
3.4
Thermal Shock Resistance, points 18 to 39
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0.010 to 0.12
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
24.3 to 37.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.2 to 1.9
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0