MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. EN AC-42200 Aluminum

C65400 bronze belongs to the copper alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C65400 bronze and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 2.6 to 47
3.0 to 6.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
320
Tensile Strength: Yield (Proof), MPa 170 to 910
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 260
500
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1020
610
Melting Onset (Solidus), °C 960
600
Specific Heat Capacity, J/kg-K 400
910
Thermal Conductivity, W/m-K 36
150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.7
2.6
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 310
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
410 to 490
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
53
Strength to Weight: Axial, points 16 to 34
34 to 35
Strength to Weight: Bending, points 16 to 27
40 to 41
Thermal Diffusivity, mm2/s 10
66
Thermal Shock Resistance, points 18 to 39
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
91 to 93.1
Chromium (Cr), % 0.010 to 0.12
0
Copper (Cu), % 93.8 to 96.1
0 to 0.050
Iron (Fe), % 0
0 to 0.19
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 2.7 to 3.4
6.5 to 7.5
Tin (Sn), % 1.2 to 1.9
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.070
Residuals, % 0 to 0.2
0 to 0.1