MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. Grade CW6MC Nickel

C65400 bronze belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.6 to 47
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
540
Tensile Strength: Yield (Proof), MPa 170 to 910
310

Thermal Properties

Latent Heat of Fusion, J/g 260
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1020
1480
Melting Onset (Solidus), °C 960
1430
Specific Heat Capacity, J/kg-K 400
440
Thermal Conductivity, W/m-K 36
11
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 2.8
14
Embodied Energy, MJ/kg 45
200
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
240
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16 to 34
18
Strength to Weight: Bending, points 16 to 27
17
Thermal Diffusivity, mm2/s 10
2.8
Thermal Shock Resistance, points 18 to 39
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.010 to 0.12
20 to 23
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0