MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. S20161 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.6 to 47
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 350 to 530
690
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
980
Tensile Strength: Yield (Proof), MPa 170 to 910
390

Thermal Properties

Latent Heat of Fusion, J/g 260
330
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1020
1380
Melting Onset (Solidus), °C 960
1330
Specific Heat Capacity, J/kg-K 400
490
Thermal Conductivity, W/m-K 36
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.7
7.5
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
360
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
390
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 16 to 34
36
Strength to Weight: Bending, points 16 to 27
29
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 18 to 39
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.010 to 0.12
15 to 18
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
65.6 to 73.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.7 to 3.4
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0