MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. 6013 Aluminum

C65500 bronze belongs to the copper alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C65500 bronze and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 4.0 to 70
3.4 to 22
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 260 to 440
190 to 240
Tensile Strength: Ultimate (UTS), MPa 360 to 760
310 to 410
Tensile Strength: Yield (Proof), MPa 120 to 430
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1030
650
Melting Onset (Solidus), °C 970
580
Specific Heat Capacity, J/kg-K 400
900
Thermal Conductivity, W/m-K 36
150
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 300
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
200 to 900
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 12 to 24
31 to 41
Strength to Weight: Bending, points 13 to 21
37 to 44
Thermal Diffusivity, mm2/s 10
60
Thermal Shock Resistance, points 12 to 26
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
94.8 to 97.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 91.5 to 96.7
0.6 to 1.1
Iron (Fe), % 0 to 0.8
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0.5 to 1.3
0.2 to 0.8
Nickel (Ni), % 0 to 0.6
0
Silicon (Si), % 2.8 to 3.8
0.6 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 1.5
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15