MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. ACI-ASTM CG6MMN Steel

C65500 bronze belongs to the copper alloys classification, while ACI-ASTM CG6MMN steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is ACI-ASTM CG6MMN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.0 to 70
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 360 to 760
670
Tensile Strength: Yield (Proof), MPa 120 to 430
320

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
1080
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 970
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Base Metal Price, % relative 29
22
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 42
68
Embodied Water, L/kg 300
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
190
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
260
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 24
24
Strength to Weight: Bending, points 13 to 21
22
Thermal Shock Resistance, points 12 to 26
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 91.5 to 96.7
0
Iron (Fe), % 0 to 0.8
51.9 to 62.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.6
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.8 to 3.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0