MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. EN 1.4116 Stainless Steel

C65500 bronze belongs to the copper alloys classification, while EN 1.4116 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is EN 1.4116 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.0 to 70
14
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 62 to 97
88
Shear Modulus, GPa 43
76
Shear Strength, MPa 260 to 440
450
Tensile Strength: Ultimate (UTS), MPa 360 to 760
750
Tensile Strength: Yield (Proof), MPa 120 to 430
430

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 200
800
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
8.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 42
36
Embodied Water, L/kg 300
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
87
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
470
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 24
27
Strength to Weight: Bending, points 13 to 21
24
Thermal Diffusivity, mm2/s 10
8.1
Thermal Shock Resistance, points 12 to 26
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0
14 to 15
Copper (Cu), % 91.5 to 96.7
0
Iron (Fe), % 0 to 0.8
81.3 to 85
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0 to 0.6
0
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.8 to 3.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0