MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. EN 1.6368 Steel

C65500 bronze belongs to the copper alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 70
18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 260 to 440
410 to 430
Tensile Strength: Ultimate (UTS), MPa 360 to 760
660 to 690
Tensile Strength: Yield (Proof), MPa 120 to 430
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 970
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 36
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.4
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 42
22
Embodied Water, L/kg 300
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
110
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
580 to 650
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 24
23 to 24
Strength to Weight: Bending, points 13 to 21
21 to 22
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 12 to 26
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 91.5 to 96.7
0.5 to 0.8
Iron (Fe), % 0 to 0.8
95.1 to 97.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0 to 0.6
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.8 to 3.8
0.25 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0