MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. N08535 Stainless Steel

C65500 bronze belongs to the copper alloys classification, while N08535 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.0 to 70
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 260 to 440
400
Tensile Strength: Ultimate (UTS), MPa 360 to 760
570
Tensile Strength: Yield (Proof), MPa 120 to 430
240

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 970
1370
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 36
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.3
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 300
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
210
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 24
20
Strength to Weight: Bending, points 13 to 21
19
Thermal Diffusivity, mm2/s 10
3.3
Thermal Shock Resistance, points 12 to 26
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 91.5 to 96.7
0 to 1.5
Iron (Fe), % 0 to 0.8
29.4 to 44.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.6
29 to 36.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.8 to 3.8
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0