MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. N10629 Nickel

C65500 bronze belongs to the copper alloys classification, while N10629 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is N10629 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 4.0 to 70
45
Poisson's Ratio 0.34
0.31
Rockwell B Hardness 62 to 97
88
Shear Modulus, GPa 43
83
Shear Strength, MPa 260 to 440
600
Tensile Strength: Ultimate (UTS), MPa 360 to 760
860
Tensile Strength: Yield (Proof), MPa 120 to 430
400

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 1030
1610
Melting Onset (Solidus), °C 970
1560
Specific Heat Capacity, J/kg-K 400
390
Thermal Expansion, µm/m-K 18
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
75
Density, g/cm3 8.6
9.2
Embodied Carbon, kg CO2/kg material 2.7
15
Embodied Energy, MJ/kg 42
190
Embodied Water, L/kg 300
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
320
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
360
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 12 to 24
26
Strength to Weight: Bending, points 13 to 21
22
Thermal Shock Resistance, points 12 to 26
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.1 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
0.5 to 1.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 91.5 to 96.7
0 to 0.5
Iron (Fe), % 0 to 0.8
1.0 to 6.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
0 to 1.5
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0 to 0.6
65 to 72.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.8 to 3.8
0 to 0.050
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0