MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. S40910 Stainless Steel

C65500 bronze belongs to the copper alloys classification, while S40910 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 70
23
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 62 to 97
76
Shear Modulus, GPa 43
75
Shear Strength, MPa 260 to 440
270
Tensile Strength: Ultimate (UTS), MPa 360 to 760
430
Tensile Strength: Yield (Proof), MPa 120 to 430
190

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 200
710
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 970
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
26
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.0
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 42
28
Embodied Water, L/kg 300
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
80
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
94
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 24
16
Strength to Weight: Bending, points 13 to 21
16
Thermal Diffusivity, mm2/s 10
6.9
Thermal Shock Resistance, points 12 to 26
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 91.5 to 96.7
0
Iron (Fe), % 0 to 0.8
85 to 89.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
0 to 1.0
Nickel (Ni), % 0 to 0.6
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.8 to 3.8
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0 to 0.5
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0