MakeItFrom.com
Menu (ESC)

C66100 Bronze vs. EN 2.4608 Nickel

C66100 bronze belongs to the copper alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66100 bronze and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 40
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 280 to 460
410
Tensile Strength: Ultimate (UTS), MPa 410 to 790
620
Tensile Strength: Yield (Proof), MPa 120 to 430
270

Thermal Properties

Latent Heat of Fusion, J/g 260
330
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1000
1410
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 34
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 2.6
8.4
Embodied Energy, MJ/kg 42
120
Embodied Water, L/kg 300
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 120
170
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 790
180
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 13 to 25
20
Strength to Weight: Bending, points 14 to 22
19
Thermal Diffusivity, mm2/s 9.7
2.9
Thermal Shock Resistance, points 15 to 29
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 92 to 97
0
Iron (Fe), % 0 to 0.25
11.4 to 23.8
Lead (Pb), % 0.2 to 0.8
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.8 to 3.5
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0