MakeItFrom.com
Menu (ESC)

C66100 Bronze vs. G-CoCr28 Cobalt

C66100 bronze belongs to the copper alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C66100 bronze and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 40
6.7
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
83
Tensile Strength: Ultimate (UTS), MPa 410 to 790
560
Tensile Strength: Yield (Proof), MPa 120 to 430
260

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Maximum Temperature: Mechanical, °C 200
1200
Melting Completion (Liquidus), °C 1050
1330
Melting Onset (Solidus), °C 1000
1270
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 34
8.5
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 29
100
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.2
Embodied Energy, MJ/kg 42
84
Embodied Water, L/kg 300
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 120
31
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 790
160
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 25
19
Strength to Weight: Bending, points 14 to 22
19
Thermal Diffusivity, mm2/s 9.7
2.2
Thermal Shock Resistance, points 15 to 29
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 92 to 97
0
Iron (Fe), % 0 to 0.25
9.7 to 24.5
Lead (Pb), % 0.2 to 0.8
0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.8 to 3.5
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0