MakeItFrom.com
Menu (ESC)

C66100 Bronze vs. Nickel 825

C66100 bronze belongs to the copper alloys classification, while nickel 825 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66100 bronze and the bottom bar is nickel 825.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 40
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 280 to 460
430
Tensile Strength: Ultimate (UTS), MPa 410 to 790
650
Tensile Strength: Yield (Proof), MPa 120 to 430
260

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 34
11
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 29
41
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 2.6
7.2
Embodied Energy, MJ/kg 42
100
Embodied Water, L/kg 300
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 790
170
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 25
22
Strength to Weight: Bending, points 14 to 22
20
Thermal Diffusivity, mm2/s 9.7
2.9
Thermal Shock Resistance, points 15 to 29
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.2
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19.5 to 23.5
Copper (Cu), % 92 to 97
1.5 to 3.0
Iron (Fe), % 0 to 0.25
22 to 37.9
Lead (Pb), % 0.2 to 0.8
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 46
Silicon (Si), % 2.8 to 3.5
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0