MakeItFrom.com
Menu (ESC)

C66100 Bronze vs. N07776 Nickel

C66100 bronze belongs to the copper alloys classification, while N07776 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66100 bronze and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 40
39
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
79
Shear Strength, MPa 280 to 460
470
Tensile Strength: Ultimate (UTS), MPa 410 to 790
700
Tensile Strength: Yield (Proof), MPa 120 to 430
270

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Maximum Temperature: Mechanical, °C 200
970
Melting Completion (Liquidus), °C 1050
1550
Melting Onset (Solidus), °C 1000
1500
Specific Heat Capacity, J/kg-K 400
430
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
85
Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 2.6
15
Embodied Energy, MJ/kg 42
210
Embodied Water, L/kg 300
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 120
220
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 790
180
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 13 to 25
22
Strength to Weight: Bending, points 14 to 22
20
Thermal Shock Resistance, points 15 to 29
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 22
Copper (Cu), % 92 to 97
0
Iron (Fe), % 0 to 0.25
0 to 24.5
Lead (Pb), % 0.2 to 0.8
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.8 to 3.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0