MakeItFrom.com
Menu (ESC)

C66200 Brass vs. AISI 316L Stainless Steel

C66200 brass belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
9.0 to 50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 270 to 300
370 to 690
Tensile Strength: Ultimate (UTS), MPa 450 to 520
530 to 1160
Tensile Strength: Yield (Proof), MPa 410 to 480
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 1070
1400
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
93 to 1880
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
19 to 41
Strength to Weight: Bending, points 15 to 16
18 to 31
Thermal Diffusivity, mm2/s 45
4.1
Thermal Shock Resistance, points 16 to 18
12 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
62 to 72
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.3 to 1.0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0.050 to 0.2
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0