MakeItFrom.com
Menu (ESC)

C66200 Brass vs. AISI 440B Stainless Steel

C66200 brass belongs to the copper alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
3.0 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 270 to 300
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 450 to 520
740 to 1930
Tensile Strength: Yield (Proof), MPa 410 to 480
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 1070
1480
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
23
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 43
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
57 to 110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
27 to 70
Strength to Weight: Bending, points 15 to 16
24 to 45
Thermal Diffusivity, mm2/s 45
6.1
Thermal Shock Resistance, points 16 to 18
27 to 70

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.75 to 1.0
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
78.2 to 83.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0.3 to 1.0
0
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0