MakeItFrom.com
Menu (ESC)

C66200 Brass vs. EN 1.4313 Stainless Steel

C66200 brass belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
12 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 270 to 300
460 to 600
Tensile Strength: Ultimate (UTS), MPa 450 to 520
750 to 1000
Tensile Strength: Yield (Proof), MPa 410 to 480
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
780
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 43
34
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
870 to 2100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
27 to 36
Strength to Weight: Bending, points 15 to 16
23 to 28
Thermal Diffusivity, mm2/s 45
6.7
Thermal Shock Resistance, points 16 to 18
27 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
78.5 to 84.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0.3 to 1.0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0