MakeItFrom.com
Menu (ESC)

C66200 Brass vs. EN 1.7725 Steel

C66200 brass belongs to the copper alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.0 to 15
14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 450 to 520
830 to 1000
Tensile Strength: Yield (Proof), MPa 410 to 480
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
440
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.9
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 43
24
Embodied Water, L/kg 320
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
980 to 1940
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
29 to 35
Strength to Weight: Bending, points 15 to 16
25 to 28
Thermal Diffusivity, mm2/s 45
11
Thermal Shock Resistance, points 16 to 18
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
1.3 to 1.7
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
95.7 to 97.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0.3 to 1.0
0
Phosphorus (P), % 0.050 to 0.2
0 to 0.025
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0

Comparable Variants