MakeItFrom.com
Menu (ESC)

C66200 Brass vs. SAE-AISI 6150 Steel

C66200 brass belongs to the copper alloys classification, while SAE-AISI 6150 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is SAE-AISI 6150 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.0 to 15
15 to 23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 270 to 300
400 to 730
Tensile Strength: Ultimate (UTS), MPa 450 to 520
630 to 1200
Tensile Strength: Yield (Proof), MPa 410 to 480
420 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
46
Thermal Expansion, µm/m-K 18
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.3
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 43
28
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
460 to 3590
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
22 to 43
Strength to Weight: Bending, points 15 to 16
21 to 32
Thermal Diffusivity, mm2/s 45
13
Thermal Shock Resistance, points 16 to 18
20 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.48 to 0.53
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
96.7 to 97.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.7 to 0.9
Nickel (Ni), % 0.3 to 1.0
0
Phosphorus (P), % 0.050 to 0.2
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.2 to 0.7
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0