MakeItFrom.com
Menu (ESC)

C66200 Brass vs. C82700 Copper

Both C66200 brass and C82700 copper are copper alloys. They have 90% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.0 to 15
1.8
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
46
Tensile Strength: Ultimate (UTS), MPa 450 to 520
1200
Tensile Strength: Yield (Proof), MPa 410 to 480
1020

Thermal Properties

Latent Heat of Fusion, J/g 200
240
Maximum Temperature: Mechanical, °C 180
300
Melting Completion (Liquidus), °C 1070
950
Melting Onset (Solidus), °C 1030
860
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
20
Electrical Conductivity: Equal Weight (Specific), % IACS 36
21

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 43
180
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
21
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
4260
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 14 to 17
38
Strength to Weight: Bending, points 15 to 16
29
Thermal Diffusivity, mm2/s 45
39
Thermal Shock Resistance, points 16 to 18
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 86.6 to 91
94.6 to 96.7
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.020
Nickel (Ni), % 0.3 to 1.0
1.0 to 1.5
Phosphorus (P), % 0.050 to 0.2
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0.2 to 0.7
0 to 0.1
Zinc (Zn), % 6.5 to 12.9
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5