MakeItFrom.com
Menu (ESC)

C66200 Brass vs. C94800 Bronze

Both C66200 brass and C94800 bronze are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.0 to 15
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 450 to 520
310
Tensile Strength: Yield (Proof), MPa 410 to 480
160

Thermal Properties

Latent Heat of Fusion, J/g 200
200
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 1070
1030
Melting Onset (Solidus), °C 1030
900
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
12
Electrical Conductivity: Equal Weight (Specific), % IACS 36
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 43
56
Embodied Water, L/kg 320
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
58
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
110
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 14 to 17
9.8
Strength to Weight: Bending, points 15 to 16
12
Thermal Diffusivity, mm2/s 45
12
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 86.6 to 91
84 to 89
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.050
0.3 to 1.0
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0.3 to 1.0
4.5 to 6.0
Phosphorus (P), % 0.050 to 0.2
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.2 to 0.7
4.5 to 6.0
Zinc (Zn), % 6.5 to 12.9
1.0 to 2.5
Residuals, % 0 to 0.5
0 to 1.3