MakeItFrom.com
Menu (ESC)

C66200 Brass vs. N06035 Nickel

C66200 brass belongs to the copper alloys classification, while N06035 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.0 to 15
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
84
Shear Strength, MPa 270 to 300
440
Tensile Strength: Ultimate (UTS), MPa 450 to 520
660
Tensile Strength: Yield (Proof), MPa 410 to 480
270

Thermal Properties

Latent Heat of Fusion, J/g 200
340
Maximum Temperature: Mechanical, °C 180
1030
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 390
450
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
180
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
22
Strength to Weight: Bending, points 15 to 16
20
Thermal Shock Resistance, points 16 to 18
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 86.6 to 91
0 to 0.3
Iron (Fe), % 0 to 0.050
0 to 2.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0.3 to 1.0
51.1 to 60.2
Phosphorus (P), % 0.050 to 0.2
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.2 to 0.7
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0