MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S32803 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S32803 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.0 to 15
18
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Shear Strength, MPa 270 to 300
420
Tensile Strength: Ultimate (UTS), MPa 450 to 520
680
Tensile Strength: Yield (Proof), MPa 410 to 480
560

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
120
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
760
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
25
Strength to Weight: Bending, points 15 to 16
22
Thermal Diffusivity, mm2/s 45
4.4
Thermal Shock Resistance, points 16 to 18
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
28 to 29
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
62.9 to 67.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0.3 to 1.0
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0.050 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0
0 to 0.0035
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0