MakeItFrom.com
Menu (ESC)

C66300 Brass vs. ASTM A372 Grade K Steel

C66300 brass belongs to the copper alloys classification, while ASTM A372 grade K steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is ASTM A372 grade K steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3 to 22
23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 290 to 470
490
Tensile Strength: Ultimate (UTS), MPa 460 to 810
780
Tensile Strength: Yield (Proof), MPa 400 to 800
620

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
440
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
48
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.4
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 46
24
Embodied Water, L/kg 320
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
160
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
1010
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 26
27
Strength to Weight: Bending, points 15 to 22
24
Thermal Diffusivity, mm2/s 32
13
Thermal Shock Resistance, points 16 to 28
23

Alloy Composition

Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
1.0 to 1.8
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
93.4 to 96.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.1 to 0.4
Molybdenum (Mo), % 0
0.2 to 0.6
Nickel (Ni), % 0
2.0 to 3.3
Phosphorus (P), % 0 to 0.35
0 to 0.015
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0