MakeItFrom.com
Menu (ESC)

C66300 Brass vs. AWS ER90S-B3

C66300 brass belongs to the copper alloys classification, while AWS ER90S-B3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is AWS ER90S-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3 to 22
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 460 to 810
690
Tensile Strength: Yield (Proof), MPa 400 to 800
620

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.1
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 46
24
Embodied Water, L/kg 320
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
130
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
1000
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 26
25
Strength to Weight: Bending, points 15 to 22
22
Thermal Diffusivity, mm2/s 32
11
Thermal Shock Resistance, points 16 to 28
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.070 to 0.12
Chromium (Cr), % 0
2.3 to 2.7
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0 to 0.35
Iron (Fe), % 1.4 to 2.4
93.5 to 95.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.35
0 to 0.025
Silicon (Si), % 0
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0 to 0.5