MakeItFrom.com
Menu (ESC)

C66300 Brass vs. Grade 37 Titanium

C66300 brass belongs to the copper alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.3 to 22
22
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Shear Strength, MPa 290 to 470
240
Tensile Strength: Ultimate (UTS), MPa 460 to 810
390
Tensile Strength: Yield (Proof), MPa 400 to 800
250

Thermal Properties

Latent Heat of Fusion, J/g 200
420
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 1050
1650
Melting Onset (Solidus), °C 1000
1600
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 110
21
Thermal Expansion, µm/m-K 18
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.6
4.5
Embodied Carbon, kg CO2/kg material 2.8
31
Embodied Energy, MJ/kg 46
500
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
76
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
280
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15 to 26
24
Strength to Weight: Bending, points 15 to 22
26
Thermal Diffusivity, mm2/s 32
8.4
Thermal Shock Resistance, points 16 to 28
29

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0
0 to 0.080
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 1.4 to 2.4
0 to 0.3
Lead (Pb), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.35
0
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
96.9 to 99
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0
0 to 0.4