MakeItFrom.com
Menu (ESC)

C66300 Brass vs. C15000 Copper

Both C66300 brass and C15000 copper are copper alloys. They have 86% of their average alloy composition in common.

For each property being compared, the top bar is C66300 brass and the bottom bar is C15000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.3 to 22
13 to 54
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Shear Strength, MPa 290 to 470
150 to 280
Tensile Strength: Ultimate (UTS), MPa 460 to 810
200 to 460
Tensile Strength: Yield (Proof), MPa 400 to 800
45 to 460

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 1050
1080
Melting Onset (Solidus), °C 1000
980
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 110
370
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
93
Electrical Conductivity: Equal Weight (Specific), % IACS 26
93

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.6
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 46
43
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
19 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
8.7 to 910
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 15 to 26
6.2 to 14
Strength to Weight: Bending, points 15 to 22
8.5 to 15
Thermal Diffusivity, mm2/s 32
110
Thermal Shock Resistance, points 16 to 28
7.3 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
99.8 to 99.9
Iron (Fe), % 1.4 to 2.4
0
Lead (Pb), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.35
0
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Zirconium (Zr), % 0
0.1 to 0.2
Residuals, % 0 to 0.5
0