MakeItFrom.com
Menu (ESC)

C66300 Brass vs. N08330 Stainless Steel

C66300 brass belongs to the copper alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3 to 22
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 290 to 470
360
Tensile Strength: Ultimate (UTS), MPa 460 to 810
550
Tensile Strength: Yield (Proof), MPa 400 to 800
230

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1050
Melting Completion (Liquidus), °C 1050
1390
Melting Onset (Solidus), °C 1000
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
32
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.8
5.4
Embodied Energy, MJ/kg 46
77
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
150
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 26
19
Strength to Weight: Bending, points 15 to 22
18
Thermal Diffusivity, mm2/s 32
3.1
Thermal Shock Resistance, points 16 to 28
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0 to 1.0
Iron (Fe), % 1.4 to 2.4
38.3 to 48.3
Lead (Pb), % 0 to 0.050
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 37
Phosphorus (P), % 0 to 0.35
0 to 0.030
Silicon (Si), % 0
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0 to 0.025
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0