MakeItFrom.com
Menu (ESC)

C66700 Brass vs. ASTM Grade HG10 MNN Steel

C66700 brass belongs to the copper alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 58
23
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 340 to 690
590
Tensile Strength: Yield (Proof), MPa 100 to 640
250

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
990
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1050
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
21
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.0
Embodied Energy, MJ/kg 45
58
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
160
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
21
Strength to Weight: Bending, points 13 to 21
20
Thermal Diffusivity, mm2/s 30
3.9
Thermal Shock Resistance, points 11 to 23
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 68.5 to 71.5
0 to 0.5
Iron (Fe), % 0 to 0.1
57.9 to 66.5
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0