MakeItFrom.com
Menu (ESC)

C66700 Brass vs. CR003A Copper

Both C66700 brass and CR003A copper are copper alloys. They have 70% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is CR003A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.0 to 58
15
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 340 to 690
230
Tensile Strength: Yield (Proof), MPa 100 to 640
140

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 140
200
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 1050
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 97
380
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
100
Electrical Conductivity: Equal Weight (Specific), % IACS 19
100

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 8.2
9.0
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 45
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
31
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
83
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11 to 23
7.1
Strength to Weight: Bending, points 13 to 21
9.3
Thermal Diffusivity, mm2/s 30
110
Thermal Shock Resistance, points 11 to 23
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0
0 to 0.00040
Arsenic (As), % 0
0 to 0.00050
Bismuth (Bi), % 0
0 to 0.00020
Copper (Cu), % 68.5 to 71.5
99.954 to 100
Iron (Fe), % 0 to 0.1
0 to 0.0010
Lead (Pb), % 0 to 0.070
0 to 0.00050
Manganese (Mn), % 0.8 to 1.5
0
Oxygen (O), % 0
0 to 0.040
Selenium (Se), % 0
0 to 0.00020
Silver (Ag), % 0
0 to 0.0025
Sulfur (S), % 0
0 to 0.0015
Tellurium (Te), % 0
0 to 0.00020
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0