MakeItFrom.com
Menu (ESC)

C66700 Brass vs. SAE-AISI 1055 Steel

C66700 brass belongs to the copper alloys classification, while SAE-AISI 1055 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
11 to 14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Shear Strength, MPa 250 to 530
440 to 450
Tensile Strength: Ultimate (UTS), MPa 340 to 690
730 to 750
Tensile Strength: Yield (Proof), MPa 100 to 640
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 97
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
11
Electrical Conductivity: Equal Weight (Specific), % IACS 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
440 to 1070
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
26
Strength to Weight: Bending, points 13 to 21
23
Thermal Diffusivity, mm2/s 30
14
Thermal Shock Resistance, points 11 to 23
23 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.5 to 0.6
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.1
98.4 to 98.9
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0