MakeItFrom.com
Menu (ESC)

C66700 Brass vs. C61000 Bronze

Both C66700 brass and C61000 bronze are copper alloys. They have 70% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 58
29 to 50
Poisson's Ratio 0.31
0.34
Rockwell B Hardness 57 to 93
60 to 85
Shear Modulus, GPa 41
42
Shear Strength, MPa 250 to 530
280 to 300
Tensile Strength: Ultimate (UTS), MPa 340 to 690
390 to 460
Tensile Strength: Yield (Proof), MPa 100 to 640
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 180
220
Maximum Temperature: Mechanical, °C 140
210
Melting Completion (Liquidus), °C 1090
1040
Melting Onset (Solidus), °C 1050
990
Specific Heat Capacity, J/kg-K 390
420
Thermal Conductivity, W/m-K 97
69
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
15
Electrical Conductivity: Equal Weight (Specific), % IACS 19
16

Otherwise Unclassified Properties

Base Metal Price, % relative 25
29
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 320
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
100 to 160
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 23
13 to 15
Strength to Weight: Bending, points 13 to 21
14 to 16
Thermal Diffusivity, mm2/s 30
19
Thermal Shock Resistance, points 11 to 23
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
6.0 to 8.5
Copper (Cu), % 68.5 to 71.5
90.2 to 94
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.070
0 to 0.020
Manganese (Mn), % 0.8 to 1.5
0
Silicon (Si), % 0
0 to 0.1
Zinc (Zn), % 26.3 to 30.7
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants