MakeItFrom.com
Menu (ESC)

C66700 Brass vs. S15500 Stainless Steel

C66700 brass belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
6.8 to 16
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 250 to 530
540 to 870
Tensile Strength: Ultimate (UTS), MPa 340 to 690
890 to 1490
Tensile Strength: Yield (Proof), MPa 100 to 640
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
820
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
890 to 4460
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
32 to 53
Strength to Weight: Bending, points 13 to 21
26 to 37
Thermal Diffusivity, mm2/s 30
4.6
Thermal Shock Resistance, points 11 to 23
30 to 50

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 68.5 to 71.5
2.5 to 4.5
Iron (Fe), % 0 to 0.1
71.9 to 79.9
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0