MakeItFrom.com
Menu (ESC)

C66700 Brass vs. S30435 Stainless Steel

C66700 brass belongs to the copper alloys classification, while S30435 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
51
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 57 to 93
77
Shear Modulus, GPa 41
76
Shear Strength, MPa 250 to 530
370
Tensile Strength: Ultimate (UTS), MPa 340 to 690
510
Tensile Strength: Yield (Proof), MPa 100 to 640
170

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
900
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
16
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
14
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 45
40
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
77
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
18
Strength to Weight: Bending, points 13 to 21
18
Thermal Diffusivity, mm2/s 30
4.2
Thermal Shock Resistance, points 11 to 23
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 68.5 to 71.5
1.5 to 3.0
Iron (Fe), % 0 to 0.1
66.9 to 75.5
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Nickel (Ni), % 0
7.0 to 9.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0