MakeItFrom.com
Menu (ESC)

C66700 Brass vs. S32053 Stainless Steel

C66700 brass belongs to the copper alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.0 to 58
46
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 57 to 93
83
Shear Modulus, GPa 41
80
Shear Strength, MPa 250 to 530
510
Tensile Strength: Ultimate (UTS), MPa 340 to 690
730
Tensile Strength: Yield (Proof), MPa 100 to 640
330

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1050
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 97
13
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
33
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.1
Embodied Energy, MJ/kg 45
83
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
270
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
270
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
25
Strength to Weight: Bending, points 13 to 21
22
Thermal Diffusivity, mm2/s 30
3.3
Thermal Shock Resistance, points 11 to 23
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.1
41.7 to 48.8
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0