MakeItFrom.com
Menu (ESC)

C66900 Brass vs. EN 1.4477 Stainless Steel

C66900 brass belongs to the copper alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.1 to 26
22 to 23
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 45
81
Shear Strength, MPa 290 to 440
550 to 580
Tensile Strength: Ultimate (UTS), MPa 460 to 770
880 to 930
Tensile Strength: Yield (Proof), MPa 330 to 760
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 860
1430
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
20
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
940 to 1290
Stiffness to Weight: Axial, points 8.1
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 26
31 to 33
Strength to Weight: Bending, points 16 to 23
26 to 27
Thermal Shock Resistance, points 14 to 23
23 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 62.5 to 64.5
0 to 0.8
Iron (Fe), % 0 to 0.25
56.6 to 63.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0 to 0.2
0