MakeItFrom.com
Menu (ESC)

C66900 Brass vs. N08320 Stainless Steel

C66900 brass belongs to the copper alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 26
40
Poisson's Ratio 0.32
0.28
Rockwell B Hardness 65 to 100
84
Shear Modulus, GPa 45
78
Shear Strength, MPa 290 to 440
400
Tensile Strength: Ultimate (UTS), MPa 460 to 770
580
Tensile Strength: Yield (Proof), MPa 330 to 760
220

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 860
1400
Melting Onset (Solidus), °C 850
1350
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
28
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.8
4.9
Embodied Energy, MJ/kg 46
69
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
180
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
120
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 26
20
Strength to Weight: Bending, points 16 to 23
20
Thermal Shock Resistance, points 14 to 23
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 62.5 to 64.5
0
Iron (Fe), % 0 to 0.25
40.4 to 50
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0 to 2.5
Nickel (Ni), % 0
25 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0 to 0.2
0