MakeItFrom.com
Menu (ESC)

C67000 Bronze vs. EN 1.4655 Stainless Steel

C67000 bronze belongs to the copper alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67000 bronze and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6 to 11
23 to 25
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 42
78
Shear Strength, MPa 390 to 510
460
Tensile Strength: Ultimate (UTS), MPa 660 to 880
720 to 730
Tensile Strength: Yield (Proof), MPa 350 to 540
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
1050
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 850
1370
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 99
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.9
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 350
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 62
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1290
510 to 580
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 31
26
Strength to Weight: Bending, points 21 to 26
23
Thermal Diffusivity, mm2/s 30
4.0
Thermal Shock Resistance, points 21 to 29
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 6.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 63 to 68
1.0 to 3.0
Iron (Fe), % 2.0 to 4.0
63.6 to 73.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 21.8 to 32.5
0
Residuals, % 0 to 0.5
0