MakeItFrom.com
Menu (ESC)

C67000 Bronze vs. EN 1.7362 Steel

C67000 bronze belongs to the copper alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67000 bronze and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6 to 11
21 to 22
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 390 to 510
320 to 370
Tensile Strength: Ultimate (UTS), MPa 660 to 880
510 to 600
Tensile Strength: Yield (Proof), MPa 350 to 540
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 160
510
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 99
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 25
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.8
Embodied Energy, MJ/kg 49
23
Embodied Water, L/kg 350
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 62
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1290
100 to 340
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 31
18 to 21
Strength to Weight: Bending, points 21 to 26
18 to 20
Thermal Diffusivity, mm2/s 30
11
Thermal Shock Resistance, points 21 to 29
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 6.0
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 63 to 68
0 to 0.3
Iron (Fe), % 2.0 to 4.0
91.5 to 95.2
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 21.8 to 32.5
0
Residuals, % 0 to 0.5
0