MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. C72900 Copper-nickel

Both C67300 bronze and C72900 copper-nickel are copper alloys. They have 62% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 12
6.0 to 20
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
45
Shear Strength, MPa 300
540 to 630
Tensile Strength: Ultimate (UTS), MPa 500
870 to 1080
Tensile Strength: Yield (Proof), MPa 340
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 130
210
Melting Completion (Liquidus), °C 870
1120
Melting Onset (Solidus), °C 830
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 95
29
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
39
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.6
Embodied Energy, MJ/kg 46
72
Embodied Water, L/kg 320
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 550
2030 to 3490
Stiffness to Weight: Axial, points 7.4
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
27 to 34
Strength to Weight: Bending, points 17
23 to 27
Thermal Diffusivity, mm2/s 30
8.6
Thermal Shock Resistance, points 16
31 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0
Copper (Cu), % 58 to 63
74.1 to 78
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0.4 to 3.0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 2.0 to 3.5
0 to 0.3
Nickel (Ni), % 0 to 0.25
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0.5 to 1.5
0
Tin (Sn), % 0 to 0.3
7.5 to 8.5
Zinc (Zn), % 27.2 to 39.1
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.3