MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. S32906 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 12
28
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
81
Shear Strength, MPa 300
550
Tensile Strength: Ultimate (UTS), MPa 500
850
Tensile Strength: Yield (Proof), MPa 340
620

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 870
1430
Melting Onset (Solidus), °C 830
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
13
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
20
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
220
Resilience: Unit (Modulus of Resilience), kJ/m3 550
950
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
30
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 30
3.6
Thermal Shock Resistance, points 16
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 58 to 63
0 to 0.8
Iron (Fe), % 0 to 0.5
56.6 to 63.6
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0 to 0.25
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0