MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. S42035 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
18
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 91
76
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
390
Tensile Strength: Ultimate (UTS), MPa 500
630
Tensile Strength: Yield (Proof), MPa 340
430

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
810
Melting Completion (Liquidus), °C 870
1450
Melting Onset (Solidus), °C 830
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 25
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 46
34
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
100
Resilience: Unit (Modulus of Resilience), kJ/m3 550
460
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 30
7.2
Thermal Shock Resistance, points 16
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 58 to 63
0
Iron (Fe), % 0 to 0.5
78.1 to 85
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0 to 0.25
1.0 to 2.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0