MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. S44627 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while S44627 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
24
Poisson's Ratio 0.31
0.27
Rockwell B Hardness 91
79
Shear Modulus, GPa 41
80
Shear Strength, MPa 300
310
Tensile Strength: Ultimate (UTS), MPa 500
490
Tensile Strength: Yield (Proof), MPa 340
300

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 870
1440
Melting Onset (Solidus), °C 830
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
100
Resilience: Unit (Modulus of Resilience), kJ/m3 550
220
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 30
4.6
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 58 to 63
0 to 0.2
Iron (Fe), % 0 to 0.5
69.2 to 74.2
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 0.25
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.5
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0