MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. AWS ER80S-Ni3

C67500 bronze belongs to the copper alloys classification, while AWS ER80S-Ni3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is AWS ER80S-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 33
27
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 430 to 580
630
Tensile Strength: Yield (Proof), MPa 170 to 370
530

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 27
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 47
23
Embodied Water, L/kg 330
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
160
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
740
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
22
Strength to Weight: Bending, points 16 to 19
21
Thermal Diffusivity, mm2/s 34
14
Thermal Shock Resistance, points 14 to 19
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 57 to 60
0 to 0.35
Iron (Fe), % 0.8 to 2.0
93.2 to 96.6
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.3
Nickel (Ni), % 0
3.0 to 3.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0 to 0.5