MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. EN 1.4615 Stainless Steel

C67500 bronze belongs to the copper alloys classification, while EN 1.4615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 33
50
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 350
360
Tensile Strength: Ultimate (UTS), MPa 430 to 580
500
Tensile Strength: Yield (Proof), MPa 170 to 370
200

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
840
Melting Completion (Liquidus), °C 890
1400
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
200
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
99
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
18
Strength to Weight: Bending, points 16 to 19
18
Thermal Diffusivity, mm2/s 34
4.1
Thermal Shock Resistance, points 14 to 19
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 57 to 60
2.0 to 4.0
Iron (Fe), % 0.8 to 2.0
63.1 to 72.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
4.5 to 6.0
Nitrogen (N), % 0
0.020 to 0.060
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0