MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. SAE-AISI 1132 Steel

C67500 bronze belongs to the copper alloys classification, while SAE-AISI 1132 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is SAE-AISI 1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 33
14 to 18
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 270 to 350
400 to 440
Tensile Strength: Ultimate (UTS), MPa 430 to 580
640 to 720
Tensile Strength: Yield (Proof), MPa 170 to 370
350 to 590

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 27
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
93 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
330 to 940
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
23 to 25
Strength to Weight: Bending, points 16 to 19
21 to 23
Thermal Diffusivity, mm2/s 34
14
Thermal Shock Resistance, points 14 to 19
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0.24 to 0.34
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.8 to 2.0
97.8 to 98.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0