MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. Z41321 Zinc

C67500 bronze belongs to the copper alloys classification, while Z41321 zinc belongs to the zinc alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is Z41321 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
87
Elongation at Break, % 14 to 33
60
Poisson's Ratio 0.3
0.25
Shear Modulus, GPa 40
35
Tensile Strength: Ultimate (UTS), MPa 430 to 580
190
Tensile Strength: Yield (Proof), MPa 170 to 370
150

Thermal Properties

Latent Heat of Fusion, J/g 170
110
Maximum Temperature: Mechanical, °C 120
90
Melting Completion (Liquidus), °C 890
410
Melting Onset (Solidus), °C 870
400
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
110
Thermal Expansion, µm/m-K 21
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
27
Electrical Conductivity: Equal Weight (Specific), % IACS 27
37

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
6.6
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
54
Embodied Water, L/kg 330
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
130
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 15 to 20
7.9
Strength to Weight: Bending, points 16 to 19
11
Thermal Diffusivity, mm2/s 34
44
Thermal Shock Resistance, points 14 to 19
5.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.25
0 to 0.010
Cadmium (Cd), % 0
0 to 0.0050
Copper (Cu), % 57 to 60
0.5 to 1.0
Iron (Fe), % 0.8 to 2.0
0 to 0.010
Lead (Pb), % 0 to 0.2
0 to 0.010
Manganese (Mn), % 0.050 to 0.5
0
Tin (Sn), % 0.5 to 1.5
0 to 0.0030
Titanium (Ti), % 0
0.080 to 0.18
Zinc (Zn), % 35.1 to 41.7
98.8 to 99.42
Residuals, % 0 to 0.5
0