MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. AISI 310S Stainless Steel

C67600 bronze belongs to the copper alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
34 to 44
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
79
Shear Strength, MPa 270 to 350
420 to 470
Tensile Strength: Ultimate (UTS), MPa 430 to 570
600 to 710
Tensile Strength: Yield (Proof), MPa 170 to 380
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 47
61
Embodied Water, L/kg 330
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
190 to 310
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
21 to 25
Strength to Weight: Bending, points 16 to 19
20 to 22
Thermal Diffusivity, mm2/s 35
4.1
Thermal Shock Resistance, points 14 to 19
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.4 to 1.3
48.3 to 57
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0